CS170: Discrete Methods in Computer Science Spring 2025 Sorting

Instructor: Shaddin Dughmi¹

1

¹These slides adapt some content from similar slides by Aaron Cote.

Sorting

- In this lecture, we will examine the problem of sorting an array.
- This will exercise what we learned about proofs (especially induction) and runtime.
- Good warmup for 270.

2

Sorting

- In this lecture, we will examine the problem of sorting an array.
- This will exercise what we learned about proofs (especially induction) and runtime.
- Good warmup for 270.

Sorting

- Input: An array of n numbers, in arbitrary order
 - $a = [a_0, \dots, a_{n-1}]$
- ullet Output: Array with same n numbers, ordered from small to large
 - If the same number appears multiple times in the input, it must appear the same number of times in the output

2

Sorting

- In this lecture, we will examine the problem of sorting an array.
- This will exercise what we learned about proofs (especially induction) and runtime.
- Good warmup for 270.

Sorting

- ullet Input: An array of n numbers, in arbitrary order
 - $a = [a_0, \dots, a_{n-1}]$
- ullet Output: Array with same n numbers, ordered from small to large
 - If the same number appears multiple times in the input, it must appear the same number of times in the output

Computational Model

We need to be clear about how to count runtime. In addition to usual, we consider the following to be basic operations taking constant time:

- Comparison of two numbers
- Reading / Writing from array, given index

Outline

- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort

Bubble Sort at a High Level

- Compare a_0 and a_1 , swap if out of order
- Compare a_1 and a_2 , swap if out of order
- Compare a_2 and a_3 , swap if out of order
- ...
- Compare a_{n-2} and a_{n-1} , swap if out of order

Bubble Sort 3/21

Bubble Sort at a High Level

- Compare a_0 and a_1 , swap if out of order
- Compare a_1 and a_2 , swap if out of order
- Compare a_2 and a_3 , swap if out of order
- ...
- Compare a_{n-2} and a_{n-1} , swap if out of order

At this point, we know the largest is at the last position a_{n-1} , so we repeat the above up to position n-2, then up to position n-3, etc

Bubble Sort 3/21

Bubble Sort at a High Level

- Compare a_0 and a_1 , swap if out of order
- Compare a_1 and a_2 , swap if out of order
- Compare a_2 and a_3 , swap if out of order
- ...
- Compare a_{n-2} and a_{n-1} , swap if out of order

At this point, we know the largest is at the last position a_{n-1} , so we repeat the above up to position n-2, then up to position n-3, etc

Lets work through this example: [7, 9, 5, 9, 3]

Bubble Sort 3/21

Bubble Sort in Pseudocode

- For i from n-1 to 1
 - For j from 0 to i-1
 - If a[j] > a[j+1] then swap(a, j, j+1)

Bubble Sort 4/21

Bubble Sort in Pseudocode

- For i from n-1 to 1
 - For i from 0 to i-1
 - If a[j] > a[j+1] then swap(a,j, j+1)

The function $\operatorname{swap}(a,j,j+1)$ just reads a[j] and a[j+1] into registers and then copies a[j] into position j+1 and a[j+1] into position j. Obviously constant time.

Bubble Sort 4/21

Runtime Analysis

- For i from n-1 to 1
 - For i from 0 to i-1
 - If a[j] > a[j+1] then swap(a,j, j+1)

Runtime Analysis

- n-1=O(n) iterations of outer loop
- $(n-1) + (n-2) + \ldots + 1 = \sum_{i=1}^{n-1} i = O(n^2)$ iterations of inner loop.
- Innermost statement takes time O(1), executed $O(n^2)$ times
- Total: $O(n^2)$

Bubble Sort 5/21

- For i from n-1 to 1
 - For j from 0 to i-1
 - If a[j] > a[j+1] then swap(a,j, j+1)

We use induction on number of iterations of the outer loop to prove

Loop invariant

At the start of the kth iteration, the largest k-1 elements are in the last k-1 positions, in sorted order.

• kth iteration is when i = n - k.

Bubble Sort 6/21

- For i from n-1 to 1
 - For j from 0 to i-1
 - If a[j] > a[j+1] then swap(a,j, j+1)

We use induction on number of iterations of the outer loop to prove

Loop invariant

At the start of the kth iteration, the largest k-1 elements are in the last k-1 positions, in sorted order.

• kth iteration is when i = n - k.

Proof

- Base case: At start of 1st iter, largest 0 elts are in last 0 positions.
- Inductive Hypothesis: Loop invariant true for k
- Induction step: Prove Loop invariant for k+1. During iteration k, last k-1 elements (largest) don't move. kth largest element will be bubbled up to index n-k. So at start of k+1 iteration largest k elements are in the last k positions in sorted order.

Outline

- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort

Selection Sort at a High Level

- Scan array to find smallest element, swap into first position (a_0)
- Scan array from second position (that would be a_1) to the end to find smallest, swap into in 2nd position
- Scan array from third position (that would be a_2) to last element to find smallest, swap into third position
- ...
- Until sorted

Selection Sort 7/21

Selection Sort at a High Level

- Scan array to find smallest element, swap into first position (a_0)
- Scan array from second position (that would be a_1) to the end to find smallest, swap into in 2nd position
- Scan array from third position (that would be a_2) to last element to find smallest, swap into third position
- ...
- Until sorted

Lets work through this example: [7, 9, 5, 9, 3]

Selection Sort 7/21

Selection Sort in Pseudocode

- For i from 0 to n-1
 - small = i;
 - For j from i+1 to n-1
 - If a[j] < a[small] then small = j
 - swap(a,i,small)

Selection Sort 8/21

Runtime Analysis

- For i from 0 to n-1
 - small = i;
 - For j from i+1 to n-1
 - If a[j] < a[small] then small = j
 - swap(a,i,small)

Runtime Analysis

- n iterations of outer loop
- $(n-1) + (n-2) + \ldots + 1 = O(n^2)$ iterations of inner loop
- Otherwise, each statement takes constant time per execution
- Total: $O(n^2)$

Selection Sort 9/21

- For i from 0 to n-1
 - small = i;
 - For j from i+1 to n-1
 - If a[j] < a[small] then small = j
 - swap(a,i,small)

Loop invariant

At the start of outer iteration with i=k, the smallest k elements are in the first k positions, in sorted order.

Selection Sort 10/21

- For i from 0 to n-1
 - small = i;
 - For i from i+1 to n-1
 - If a[j] < a[small] then small = j
 - swap(a,i,small)

Loop invariant

At the start of outer iteration with i = k, the smallest k elements are in the first k positions, in sorted order.

Proof

- Base case: Smallest 0 elts are in first 0 positions at beginning.
- Inductive Hypothesis: Loop invariant true for k
- Induction step: Prove Loop invariant for k+1. During iteration with i=k, first k elements (smallest) don't move. k+1st smallest element will be swapped into position k (the k+1st position in the array). So at start of iteration with i = k + 1, smallest k + 1elements are in the first k+1 positions in sorted order.

Outline

- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort

Insertion Sort at a High Level

- Sort the first element of the array (i.e., do nothing)
- Insert the second element of array so that first two elements are sorted
- Insert the third element so first three elements are sorted
- ...
- Insert the last element so all elements are sorted.

Insertion Sort 11/21

Insertion Sort at a High Level

- Sort the first element of the array (i.e., do nothing)
- Insert the second element of array so that first two elements are sorted
- Insert the third element so first three elements are sorted
- ...
- Insert the last element so all elements are sorted.

Lets work through this example: [7, 9, 5, 9, 3]

Insertion Sort 11/21

Insertion Sort in Pseudocode

- For i from 1 to n-1
 - \bullet j=i
 - While (j > 0 and a[j] < a[j-1])
 - swap(a, j, j 1)
 - j = j 1

Insertion Sort 12/21

Runtime Analysis

- For i from 1 to n-1
 - \bullet j=i
 - While (j > 0 and a[j] < a[j-1])
 - swap(a, j, j 1)
 - j = j 1

Runtime Analysis

- n-1=O(n) iterations of outer loop
- $1+2...+(n-1)=O(n^2)$ iterations of inner loop
- Otherwise, each statement takes constant time per execution

• Total: $O(n^2)$

Insertion Sort 13/21

- For i from 1 to n-1
 - \bullet j=i
 - While (j > 0 and a[j] < a[j-1])
 - swap(a, j, j 1)
 - j = j 1

Loop invariant

At the start of outer iteration with i=k, the first k elements of the array are in sorted order.

Insertion Sort 14/21

- For i from 1 to n-1
 - \bullet j=i
 - While (j > 0 and a[j] < a[j-1])
 - swap(a,j,j-1)
 - j = j 1

Loop invariant

At the start of outer iteration with i=k, the first k elements of the array are in sorted order.

Proof

- Base case: The first element is in sorted order
- Inductive Hypothesis: Loop invariant true for k
- Induction step: Prove Loop invariant for k+1. During iteration with i=k, first k elements don't change their relative order. The k+1st element will be inserted (bubbled down) in its proper place between them. So at start of iteration with i=k+1, first k+1

Outline

- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort

Merge Sort at a High Level

- If your array has 1 element, you're done
- Otherwise, resursively sort left half and right half
- Merge the left and right half to produce the entire sorted array
 - Smallest element overall must be smallest on left or on right
 - Move that to final array
 - Repeat

Merge Sort 15/21

Merge Sort at a High Level

- If your array has 1 element, you're done
- Otherwise, resursively sort left half and right half
- Merge the left and right half to produce the entire sorted array
 - Smallest element overall must be smallest on left or on right
 - Move that to final array
 - Repeat

Lets work through this example: [1, 5, 3, 0, 4, 6, 2, 8]

Merge Sort 15/21

Merge Sort in Pseudocode

Mergsort(a, L, R):

- If L = R return.
- Let m be the middle between L and R (what should exact equation for m be?)
- Mergesort(a, L,m)
- Mergesort(a, m + 1, R)
- Merge(*a*,*L*,*m*,*R*)

Merge Sort 16/21

Merge Sort in Pseudocode

Merge(a, L, m, R):

- Create temporary array b (how long?)
- \bullet i = L, j = m + 1, k = 0
- While $i \leq m$ and $j \leq R$
 - Copy the smaller of a[i] and a[j] to b[k], incrementing the corresponding index (i or j), and incrementing k.
- Copy the remaining (uncopied) elements to b in order
- Copy b back to $a[L, \ldots, R]$.

Merge Sort 16/21

Lemma

Let a_ℓ denote the subarray $a[L,\ldots,m]$ and a_r denote the subarray $a[m+1,\ldots,R]$. When a_ℓ and a_r are sorted, merge sorts $a[L\ldots,R]$.

Merge Sort 17/21

Lemma

Let a_ℓ denote the subarray $a[L, \ldots, m]$ and a_r denote the subarray $a[m+1, \ldots, R]$. When a_ℓ and a_r are sorted, merge sorts $a[L, \ldots, R]$.

Proof

- It suffices to prove that after the while loop iteration with k=t, $b[0,\ldots,t]$ contains the t smallest elements in $a[L,\ldots,R]$ in order.
 - The rest, after the while loop, is obvious since we copy remaining elements in order.
- We do this by induction on t.

Merge Sort 17/21

Lemma

Let a_ℓ denote the subarray $a[L,\ldots,m]$ and a_r denote the subarray $a[m+1,\ldots,R]$. When a_ℓ and a_r are sorted, merge sorts $a[L\ldots,R]$.

Proof

- Base case t=0: We copy the smaller of a[L] and a[m+1] to b[0]. Since a_{ℓ} and a_r are sorted, this is smallest overall in $a[L, \ldots, R]$.
- Inductive hypothesis: After iteration of the while loop with k=t, $b[0,\ldots,t]$ contains the t smallest elements in $a[L,\ldots,R]$ in order.
- Inductive step:
 - Consider the iteration with k = t + 1.
 - a[i] is the smallest element of a_{ℓ} that has not been copied to b, and a[j] is the smallest element of a_r that has not been copied to b.
 - We pick smaller of these to copy into b[k]. This is the next smallest.
 - Therefore, $b[0,\ldots,t+1]$ now contains the t+1 smallest elements in order.

Merge Sort 17/21

Theorem

Mergesort correctly sorts the subarray a' = a[L, ..., R].

Proof

- We strongly induct on the length n of a'.
- Base case n = 1: Here L = R, and the algorithm returns.
- Induction hypothesis: Mergesort correctly sorts subarrays of length at most n.
- Induction step:
 - Consider subarray a' of length n+1.
 - Mergesort splits it into two parts $a'_{\ell} = a[L, \ldots, m]$ and $a'_{r} = a[m+1, \ldots, R]$ of length no more than n (in fact, roughly $\frac{n+1}{2}$), and recurses on each part.
 - By induction hypothesis, the recursive calls correctly sort a'_{ℓ} and a'_{r} .
 - By earlier Lemma, Merge correctly sorts a' given the two sorted parts a'_{ℓ} and a'_{r}

Merge Sort 18/21

Runtime Analysis: Merge

Lemma

The Merge operation runs in linear time.

In more detail: When given subarrays $a_\ell=a[L,\ldots,m]$ and $a_r=a[m+1,\ldots,R]$, with total length n=R-L+1, runs in time O(n).

Merge Sort 19/21

Runtime Analysis: Merge

Lemma

The Merge operation runs in linear time.

In more detail: When given subarrays $a_\ell=a[L,\ldots,m]$ and $a_r=a[m+1,\ldots,R]$, with total length n=R-L+1, runs in time O(n).

Proof

- Creating b takes linear time
- While loop has O(n) iterations, since it increments one of i or j each iteration, and this can happen at most m-L+R-m=O(n) times before the while loop terminates.
- Each iteration of loop takes constant time
- Remaining copying operations take linear time

Merge Sort 19/21

Runtime Analysis: Solve by Tree

On board

Merge Sort 20/21

Runtime Analysis: Induction

Claim

Mergesort runs in time $O(n \log n)$.

Proof

- Let T(n) be the worst-case runtime of mergesort on arrays of length n.
- There is a constant c such that
 - T(1) < c
 - $T(n) \leq c$ • $T(n) \leq 2T(n/2) + cn$ for all $n \geq 2$ (why?)
- We can show by strong induction that $T(n) \le cn(\log(n) + 1)$
- Base case n = 1: Trivial
- Inductive step:

$$T(n) \le 2T(n/2) + cn \le 2c\frac{n}{2}(\log(n/2) + 1) + cn = cn(\log n + 1)$$

where the inequality invokes the inductive hypothesis for n/2